Potential to Measure a Neutron Form Factor with Neutrino-Nucleus Elastic Scattering

Phil Amanik
NC State University
INFO 7-3-07

Outline

- Why do we want to measure the neutron form factor of a nucleus?
- How could this be done with neutrino-nucleus elastic scattering?
- What are the prospects?

Work done in collaboration with Gail McLaughlin at NC State

Why measure the neutron form factor?

- We do not have accurate knowledge of the size of medium to heavy nuclei
- Charge radii are well known from electron scattering
- Neutron radii are probed with hadronic (proton, pion) scattering but interpretation of experiments suffers from uncertainty in theory (for example: corrections from multiple scattering, medium modifications to nucleon-nucleon interaction)
- Nuclear structure calculations (mean field models, Skyrme interactions) to predict neutron radii disagree
- Figure of merit in literature: Uncertainty on R_n is $\sim \%10$

Horowitz, Pollock, Souder, Michaels, Phys Rev C, 63, 025501 (2001)

Why measure the neutron form factor? Part II

- Neutron form factor, density distribution, radius are all related
- HPSM suggest applications of a better knowledge of neutron density distribution in nuclei
- Saturation density of nuclear matter
- May impact: nuclear structure, atomic PNC experiments, neutron rich radioactive beams, neutron stars

Horowitz, Pollock, Souder, Michaels, Phys Rev C, 63, 025501 (2001)

How could a neutron form factor be measured?

- HPSM propose parity violating electron scattering on ²⁰⁸Pb (asymmetry depends on neutron form factor)
- Experiment tentatively scheduled at JLAB for 2008 (see http://hallaweb.jlab.org/parity/)
- Claim: extract R_n to %1 for lead
- Will this accuracy be achieved? Will experiment take place?

$$A_{LR} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

$$A_{LR} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[4\sin^2\theta_W - 1 + \frac{F_n(Q^2)}{F_n(Q^2)} \right]$$

Horowitz, Pollock, Souder, Michaels, Phys Rev C, 63, 025501 (2001)

How could a neutron form factor be measured with neutrino-nucleus elastic scattering?

- Need neutrino source
- Need nuclear recoil detector
- Need to detect elastic scattering events
- Fit measured events to calculated events (obtained using different models to predict neutron form factor)
- If calculated events from different nuclear models are outside error bars on measured events then fitting a model is possible

Example of experimental setup

- Neutrinos from Spallation Neutron Source at Oak Ridge
- Cryogenic Low Energy Astrophysics with Noble Gases

K. Scholberg, Phys Rev D, 73, 033005 (2006)

- Detect neutrino-nucleus elastic scattering
- considered: search/constrain beyond Standard Model neutrino interactions, neutrino magnetic moment, $\sin^2\theta_W$ at low energy

This experimental setup also considered by J. Barranco, O.G. Miranda, T.I. Rashba, hep-ph/0702175 "...sensitivity to extra neutral gauge bosons, leptoquarks and R-parity breaking interactions..."

Stopped-Pion Neutrino Source

- Spallation Neutron Source at Oak Ridge National Lab
- http://neutrons.ornl.gov/
- Contructed to produce neutrons for material science research
- side effect: **neutrino source** 10¹⁵ neutrinos/sec emitted

http://www.phy.ornl.gov/nusns/

Stopped-Pion Neutrino Source Part II

- Decay at rest, well known spectra
- neutrinos are FREE
- Detector ~ 20m from target
- flux ~1x10⁷ v / s cm² of each flavor at detector
- pulsed beam useful for reducing backgrounds
- neutron background (in addition to beam, cosmic ray, internal detector, other experiments instruments, etc)
 http://www.phy.ornl.gov/nusns/

<u>CLEAN</u>

- Purpose: detect Dark Matter; Low Energy Neutrinos
- neutrino-electron and neutrino-nucleus elastic scattering
- Liquid noble gases scintillate in the UV
- Thin wavelength shifting film on photomultiplier tubes to convert UV to visible
- Measure solar pp neutrino flux
- neutrino & anti neutrino magnetic moment (using reactor neutrinos and solar neutrinos) sensitive to $10^{-11} \mu_B$
- Supernova neutrinos (Total spectra because flavor blind)

D. N. McKinsey, K. J. Coakley, Astroparticle Physics, 22, 355 (2005) C. J. Horowitz, K. J. Coakley, D. N. McKinsey, Phys Rev D 68, 23005 (2003) Also see http://mckinseygroup.physics.yale.edu/publications/

CLEAN Part II

- Prototypes with Liquid Neon and Liquid Argon
- 10 kg mass tested, next 30 kg mass
- Full sized detector 10-100 tons liquid Ne or Ar; thousands of photomultipliers (1 ton can also provide useful measurements)
- Position resolution of events, enery resolution better than 10 keV
- Other noble elements could be used helium, xenon

Fig. 2. Illustration of the position resolution expected in the full-size CLEAN. In a Monte Carlo simulation, 200 keV events are placed at r = 50, 100, 150, 200, and 250 cm. The dots surrounding these points indicate the estimated position of these events, calculated using a spatial estimation algorithm.

D. N. McKinsey, K. J. Coakley, Astroparticle Physics, 22, 355 (2005) C. J. Horowitz, K. J. Coakley, D. N. McKinsey, Phys Rev D 68, 23005 (2003) Also see http://mckinseygroup.physics.yale.edu/publications

Status of idea to put CLEAN detector at SNS

- K. Scholberg (Duke) & R. Henning (UNC Chapel Hill) are doing a simulation of neutron background at location of detector (this summer)
- Evaluate shielding required to reduce neutron background
- Submit proposal in Fall for funding: shielding, putting the prototype CLEAN detector to oak ridge, doing the measurement
- D. McKinsey is at Duke talking about this yesterday and today!

How can detecting neutrino-nucleus elastic scattering provide information on the neutron distribution?

- review neutrino-nucleus elastic scattering
- example of events in detector
- consider predictions for events from different nuclear models

Neutrino-Nucleus Elastic Scattering (spin 0 nucleus)

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E} \right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2)$$

$$F(Q^2) = \frac{1}{Q_W} \int [\rho_n(r) - (1 - 4\sin^2\theta_W)\rho_p(r)] \frac{\sin(Qr)}{Qr} r^2 dr$$

$$\sin^2\theta_W \approx 0.231$$

- Form factor is Fourier transform of density distribution
- Nu-Nuc elastic scattering couples mostly to neutrons
- Clean measurement of neutron distribution
 - For low energy v's with $\lambda_v \sim R$ scattering will be coherent:
 - v "sees" all nucleons in nucleus
 - to get matrix element sum amplitudes then square
 - as E_{ν} increases λ_{ν} decreases, ν sees less of nucleus
 - FF accounts for reduction in σ as E_{ν} increases

Form Factor

- Nuclear structure calculation to get wavefunctions
- Density is: $ho(r) = \sum_i < \psi_i^\dagger(r) \psi_i(r) > 0$
- Mean field models, nucleon-nucleon interactions, various operators, etc.
- Use analytic expression to model form factor that depends on R_n since this is the parameter we want to measure
- Qualitatively: $\rho(r)$ = (constant density) x (Gaussian density dist.)

$$F(Q^2) = \frac{3j_1(QR_0)}{QR_0} \exp[-\frac{1}{2}(Qs)^2]$$
$$R_0^2 = R^2 - 5s^2$$

R is radius of density distribution s = surface thickness --- measure of length over which ρ goes from central value to a specified smaller value

J. Engel, Phys Lett B 264, 114 (1991)

Form Factor Part II

$$F(Q^2) = \frac{1}{Q_W} [NF_n(Q^2) - Z(1 - 4\sin^2\theta_W)F_p(Q^2)]$$

 $F_n(Q^2)$ and $F_p(Q^2)$ are evaluated at R_n and R_p respectively

Consider the detector filled with argon isotope 39 Ar Z = 18, N = 22

From experiment: $< R_p^2 > \approx 11.75$ K. Blaum et. al., Hyperfine Interactions 162, 101 (2005) Use R_p = 3.43

To represent neutron Form Factors from different nuclear structure calculations, modify R_n

- Start with $R_n = R_p$ (a good guess)
- Then consider $R_n=R_p\pm\%10$ and $R_n=R_p\pm\%1$

Form Factor Part III Some additional comments:

- Why consider $R_n = R_p$ + and modification?
- $Z \sim N$ nucleus might expect $R_n \sim R_p$
- But Coulomb repulsion could give $R_p > R_n$
- For N >> Z nucleus, expect $R_n > R_p$
- For both $F_n(Q^2)$ and $F_p(Q^2)$ use $s \sim 0.5$ fm
- Modified s but found conclusions do not change
- If the experiment were performed, when analyzing the data one would use a single nuclear model to compute all parameters and do the fit self consistently

Predictions of Events

$$\frac{dN}{dT}(T) = N_t \int_{E_{\min}(T)}^{m_{\mu}/2} f(E) \, \frac{d\sigma}{dT}(E, T) \, dE$$

Total events for 1 year run time, in 1 tonne liquid argon detector, per nuclear recoil energy v.s. nuclear recoil energy in keV

For case
$$R_n = R_p$$

Events predicted by different nuclear models

Nucleus Recoil Energy (keV)

Nucleus Recoil Energy (keV)

Do predictions from different theories lie outside error bars?

- Consider systematic uncertainty of %10
 K. Scholberg, Phys Rev D, 73, 033005 (2006)
- Accounts for beam, neutrino flux reaching detector, detector uncertainties
- Background? Detector efficiency? Statistical uncertainty?
- Consider again different theory predictions relative to %10 systematic uncertainty...

Binned events over total range of nuclear recoil energy

Bin Range(keV)	$R_n = R_p$	$R_n = R_p + 10\%$	% diff.	$R_n = R_p - 10\%$	% diff.	$R_n = R_p + 1\%$	% diff.	$R_n = R_p - 1\%$	% diff.
0-10	4756	4729	-1	4781	1	4754	-0	4759	0
10-20	3891	3832	-2	3946	1	3885	-0	3897	0
20-30	2884	2811	-3	2952	2	2877	-0	2891	0
30-40	2126	2050	-4	2196	3	2118	-0	2133	0
40-50	1549	1478	-5	1616	4	1542	-0	1556	0
50-60	1110	1048	-6	1169	5	1104	-1	1116	1
60-70	778	726	-7	827	6	773	-1	783	1
70-80	529	489	-8	568	7	525	-1	533	1
80-90	347	316	-9	376	8	344	-1	350	1
90-100	215	194	-10	236	10	213	-1	217	1
100-110	124	111	-11	137	11	123	-1	125	1
110-120	64	56	-12	71	12	63	-1	65	1
120-130	27	23	-13	30	13	27	-1	27	1
130-140	8	6	-14	9	14	7	-1	8	1

- 1. R_n to %1 --- not possible
- 2. R_n to %10 --- will depend on background, efficiency, statistics
- 3. Potential to distinguish models that are equivalent to $R_n = R_p + \%10$ from those that are equivalent to $R_n = R_p \%10$. Such fitting could provide useful experimental input for nuclear structure by ruling out some nuclear models.

Conclusions

- Analyzed prospects to measure the neutron form factor of a nucleus by detecting neutrino-nucleus elastic scattering.
- This appears to be difficult, but some useful information may be obtainable.
- This analysis is still preliminary. Systematic uncertainties, detector efficiency, and background are not known.
- We do not know what accuracy the JLAB measurement will ultimately achieve.
- A positive note this analysis shows that nuclear physics uncertainties should not interfere with Beyond Standard Model physics interaction searches.